posco

PosMAC®3.0

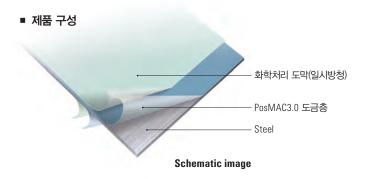
POSCO Magnesium Aluminium alloy Coating product

포스맥30

PosMAC®3.0은 동일한 도금 부착량의 일반 용융아연도금강판(GI, GI(H)) 대비 5~10배 이상의 내식성을 보유한 제품으로, 특히 절단면의 내식성이 매우 우수하여 후(厚)도금제품의 대체가 가능합니다. 기조 GI 강파과 동일한 가공 조립 및 도작 공적 전용이 가능합니다

Contents

PosMAC®3.0이란?	04
설비사양	04
	05
PosMAC®3.0의 내식성	06
우수한 PosMAC®3.0의 내식성	06
용융아연도금재(GI(H)) / 갈바륨과의 평판부 내식성 비교(SST)	07
용융아연도금재(GI(H)) / 갈바륨과의 평판부 내식성 비교(CCT)	07
Batch-Gl 도금재와의 평판부 내식성 비교	08
용융아연도금재(GI(H)) / 갈바륨과의 굴곡가공부 내식성 비교	08
Cup가공부의 내식성	08
고객사 가공품 내식성 평가	09
옥외실증평가 후 절단면 내식성 결과(한국건설생활시험연구원)	10
PosMAC®3.0 사용 수명 예측 평가 결과(일본 KOBELCO 연구소)	10
PosMAC®3.0의 백청 발생	11
PosMAC®3.0의 Galling성, 내스크래치성	11
PosMAC®3.0의 내화학성	12
10% 암모니아 용액에서의 내식성	14
	15
PosMAC®3.0의 인산염 처리성	16
PosMAC®3.0의 용접성	17
가스메탈아크(GMA) 용접	17
Spot 용접	20
고주파 조관용접	20
 레이저 용접	21
PosMAC®3.0 전용 보수도료	22
PosMAC®3.0 전용 볼트	23
	24
후처리	28
유기계 Cr-free(NB)	28
무기계 Cr-free(NT)	28
	28
제조가능 Spec (HR Base)	29
제조가능 Spec (CR Base)	33
KS 규격	37
내구성 보증서	42
특허 / EPD	43
주문 안내	44
유의 사항	45
포장	46



PosMAC®3.0이란?

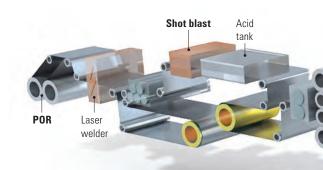
PosMAC® 3.0이란?

POSCO Magnesium Aluminium alloy Coating product를 나타내며, POSCO 고유의 기술로 개발된 Zn- 3%Mg- 2.5%Al 3원계 고내식 합금도금강판입니다.

*PosMAC®3.0은 포스코의 등록상표입니다.

■ 제품 특성

- · PosMAC3.0은 동일한 도금 부착량의 일반 용융아연도금강판(GI, GI(H)) 대비 5~10배 이상의 내식성을 보유한 제품으로, 특히 절단면의 내식성이 매우 우수하여 후(厚)도금제품의 대체가 가능합니다.
- · 기존 GI 강판과 동일한 가공, 조립 및 도장 공정 적용 가능합니다.


■ 제품 특성 비교

· GI 대비 평판, 가공부, 단면부 내식성 등 우수하고, 갈바륨 대비 단면부 내식성이 우수합니다.

품질 항목		PosMAC3.0	GI	갈바륨
도금층	경도(Hv)	110~130	60~80	80~100
마칠	특성	0	X	Δ
	평판	0	Δ	©
FALLILI	Bending	0	Δ	Δ
내식성	Cup	0	Δ	©
	단면부	0	Δ	X
내화학성		0	Δ	Δ
용건	접성	0	0	©

설비 사양

구분	분	포항 #1CGL	광양 #2CGL
가동일		2012. 04	1992. 06
생산능력 750천톤/년		750천톤/년	510천톤/년
레프리스	두께 0.4~4.5mm		0.45~2.3mm
제품치수 폭		800~1,650mm	720~1,860mm
도금량		60~400 g/m²	80~350 g/m²
제품GRADE		일반용, 구조용	자동차용, 일반용, 구조용
후차	리	Chromate(Cr ⁶⁺ , Cr ³⁺), Cr-free, 도유	Chromate(Cr³+), 도유

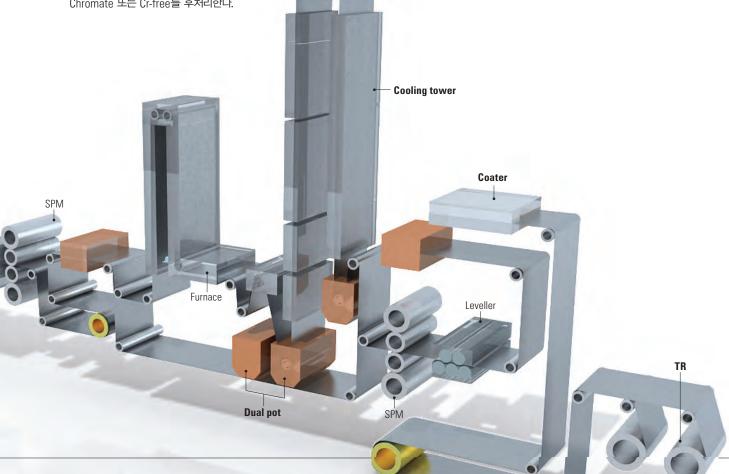
Pay off Reel과 Welder로 구성되어 있다.

Shot Blast, 산세

Shot blast와 약산세 Descaling을 통해 HR Coil 의 스케일을 제거한다.

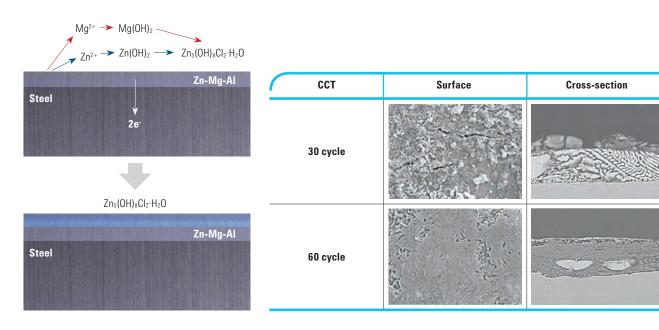
PosMAC3.0 전용 Pot에서 Zn-Mg-Al을 부착시켜, Air Knife 설비로부터 고압의 공기를 분사하여 목표로 하는 도금부착량을 얻어낸다.

조질연신과 후처리

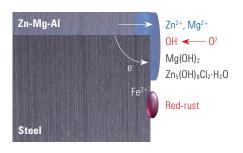


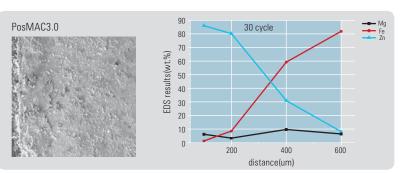
PosMAC3.0 코일의 Flat한 형상 및 미려한 표면을 얻기 위하여 Skin Pass Mill을 통과한다. 그리고 활성화된 아연 표면에 발생하기 쉬운 백청을 방지하고, 내식성을 향상시키기 위하여 Chromate 또는 Cr-free를 후처리한다.

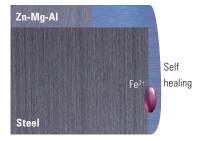
검사, 권취

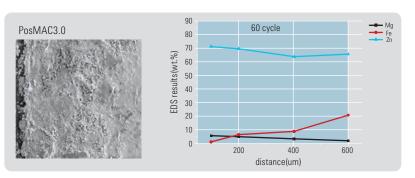


출측 설비는 검사대, Oiler, 권취 설비로 구성되어 있으며 고객사가 원하는 제품으로 적합한지 종합적으로 검사하고 판정한다.




우수한 PosMAC® 3.0의 내식성


도금층 중의 마그네슘(Mg)은 매우 안정한 상태의 치밀한 부식생성물인 시몬클라이트(Simonkolleite, $Zn_5(OH)_8Cl_2 \cdot H_2O$)의 형성을 촉진시키게 됩니다. 이 부식생성물이 도금층 표면에 마치 Film처럼 형성, 유지되어 소지 철판이 부식되는 것을 방지하는 역할을 하게 됩니다.



또한, 절단면 발생시 상부 도금층이 용해되어 단면을 피복하게 되고 안정적인 부식생성물의 성장을 촉진시키게 됩니다. 그러나 이미 노출된 소지 철판에는 적청이 발생하게 됩니다. 이후 절단면에 부식생성물 Film으로 피복이 되면 단면부의 부식을 방지하는 역할을 합니다.

용융아연도금재(GI(H)) / 갈바륨과의 평판부 내식성 비교(SST)

SST	GI(H)	갈바륨	PosM	AC3.0
도금량 양면합	600g/m²	100g/m²	200g/m²	350g/m²
480Hr				
720Hr				
1440Hr				
2400Hr				

- · PosMAC3.0은 용융아연도금강판보다 5~10배 이상 우수한 평판부 내식성을 나타냅니다.
- · 또한, PosMAC3.0은 갈바륨 대비하여 동등 이상의 우수한 평판부 내식성을 나타냅니다.

테스트 방법: 염수분무시험(SST, Salt Spray Test) [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

용융아연도금재(GI(H)) / 갈바륨과의 평판부 내식성 비교(CCT)

- · PosMAC3.0은 용융아연도금강판보다 5~10배 이상 우수한 평판부 내식성을 나타냅니다.
- · 또한, PosMAC3.0은 갈바륨 대비하여 동등 이상의 우수한 평판부 내식성을 나타냅니다.

ССТ		GI	(H)		갈바륨		PosMAC3.0	
도금량 양면합	120g/m²	200g/m²	300g/m²	600g/m²	100g/m²	140g/m²	200g/m²	275g/m²
10 cycle (80Hr)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1	T Y					
70 cycle (560Hr)			3	E 60, 2				
120 cycle (960Hr)		3	对					

테스트 방법 : 복합부식시험 (CCT, Cyclic Corrosion Test)

[ISO 14993] 1Cycle: 염수분무 2Hr(5%NaCl, 35%) → 건조 4Hr(25%RH, 60℃) → 습윤 2Hr(95%RH, 50℃)

PosMAC®3.0의 내식성

Batch 용융도금 공정

Batch-GI 도금재와의 평판부 내식성 비교 (한국화학융합시험연구원 시험번호 TBO-000048)

· PosMAC3.0은 Batch 도금재보다 5~10배 우수한 평판부 내식성을 나타냅니다.

SST	PosMAC3.0		PosMAC3.0		Batch 도금재	SST	PosN	IAC3.0	Batch 도금재
도금량 양면합	60g/m²	300g/m²	550g/m²	도금량 양면합	60g/m²	300g/m²	550g/m²		
480 Hr			979	1200 Hr					
720 Hr				2400 Hr					

테스트 방법: 염수분무시험(SST, Salt Spray Test) / [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

용융아연도금재(GI(H))/갈바륨과의 굴곡가공부 내식성 비교 Cup가공부의 내식성

· PosMAC3.0은 GI(H), 갈바륨보다 2~3배 이상 우수한 굴곡 가공부 내식성을 나타냅니다.

소재두께/강종	2.0 mmt CQ Grade					
SST	PosMAC3.0	GI(H)	갈바륨			
도금량 양면합	140g/m²	140g/m²	140g/m²			
800 Hr						
1200 Hr			-			

테스트 방법: 1t Bending(2mm 간격 굴곡) 후 염수분무시험 (SST) [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

· PosMAC3.0은 GI보다 2~3배이상, 갈바륨보다는 동등 이상의 우수한 가공부 내식성을 나타냅니다.

ССТ	PosMAC3.0	GI(H)	갈바륨
도금량 양면합	275g/m²	350g/m²	200g/m²
60 cycle		35 cycle Red-rust	
80 cycle			
100 cycle		-	

테스트 방법 : Cup 가공 후 복합부식시험 (CCT) [ISO 14993] 1Cycle : 염수분무 2Hr(5%NaCl, 35%) \rightarrow 건조 4Hr(25%RH, 60°C) \rightarrow

습윤 2Hr(95%RH, 50℃)

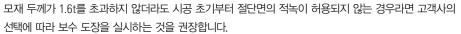
고객사 가공품 내식성 평가

■ 가공품 : 태양광 발전 하지재 C형강

구분		도금량 가공부		전단면부
CCT FAMIL	Batch-GI	370.3g/m² (편면)	PS TREE	
SST 500Hr	PosMAC3.0	116.1g/m² (편면)		0

테스트 방법 : 가공 후 염수분무시험(SST, Salt Spray Test) / [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

■ 가공품 : 태양광 발전 하지 Square type 가공부


78	Batch-GI	PosMAC3.0
구분	432g/m²(편면)	195g/m²(편면)
SST 1000Hr		CE STATE OF THE SECOND
SST 2000Hr		A STATE OF THE STA

테스트 방법 : 가공 후 염수분무시험(SST, Salt Spray Test) / [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

PosMAC®3.0의 내식성

옥외실증평가 후 절단면 내식성 결과 (한국건설생활시험연구원)

- · PosMAC3.0은 GI(H) 및 갈바륨보다 우수한 단면부 내식성을 나타냅니다.
- · 절단면은 소지철이 노출된 것이기 때문에 옥외폭로 후 초기에는 PosMAC3.0의 절단면도 적청이 발생합니다. 다만 시간이 경과함에 따라 PosMAC3.0 특유의 부식산화물(시몬클라이트) 생성으로 초기 발생 적청면적이 감소하는 경향을 보입니다.
- · PosMAC3.0의 모재두께가 1.6t를 초과하는 경우에는 1년 경과 후에도 절단면이 시몬클라이트에 의해 완전히 덮히지 않기 때문에 보수도장(카달로그 19p, 22p)을 추천 드립니다.

옥외 폭로 테스트

시편명	ը 모재 도		Cross-section image			
시민당	두께(t)	(g/m²)	6개월 경과 후	1년 경과 후	2년 경과 후	
	1.2	130		arrest and section	Contract of the second	
PosMAC3.0	1.6	120	A STATE OF THE PARTY OF THE PAR	ern place will place have		
	2.0	300	Programme result of the			
갈바륨	1.6	120	and the second s	And Associated South Street		
GI(H)	1.6	180	THE PROPERTY OF THE PROPERTY OF THE PARTY OF	4 State Continue on the		

Note. 서산 화학공업단지 내 옥외 폭로 결과('12.10월 \sim '14.10월, 한국건설생활시험연구원)

PosMAC® 3.0 사용 수명 예측 평가 결과 (일본 KOBELCO 연구소)

종류	시험편	두께(mm)	도금량 (양면, g/m²)	후처리	소지철 부식 개시 시간(CCT)	내구년수 예측 (Salt Damage 환경)
	PosMAC3.0	2.0	140	Cr	1,920Hr	50年
	(POSCO)	2.0	350	Cr-free(NB)	3,700Hr	100年
3원계 합금도금		2.0	120	Cr-free	1,920Hr	50年
		1.6	190	Cr	2,200Hr	60年
	타사 고내식 2	0.27	120	Cr-free	2,200Hr	60年
상용재	GI(H) (POSCO)	2.0	600	Cr	960Hr	25年 (Base 기준)
ତ ି ଶା	Batch GI (국내 업체)	2.0	1,000	-	960Hr	25年

테스트 방법: 복합부식시험 (CCT, Cyclic Corrosion Test)

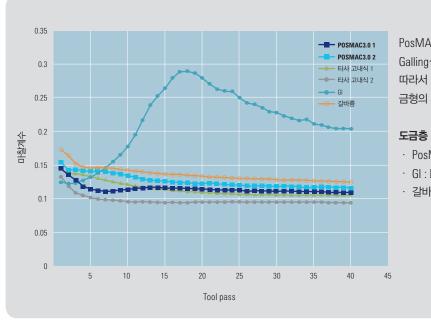
[ISO 14993] 1Cycle : 염수분무 2Hr(5%NaCl, 35%) \rightarrow 건조 4Hr(25%RH, 60°C) \rightarrow 습윤 2Hr(95%RH, 50°C)

소재별 내구수명 판단 기준 : 일본 교량가설협회에서 GI K600재 내구수명 연구결과 그 내구수명을 25년으로 판단한 Data를 기준으로 하여 타소재의 내구수명 예측

PosMAC®3.0의 백청 발생

PosMAC3.0은 시몬클라이트라는 치밀한 구조의 백청 산화물을 형성함으로써 소지철을 보호하는 내적청성이 강한 제품입니다. 따라서 백청은 일반적인 아연도금재와 같이 발생할 수 있습니다. PosMAC3.0 시공전 백청을 방지 하기 위해서는 아래와 같은 사항에 유의하여야 합니다.

■ PosMAC3.0과 GI의 부식생성물 FE-SEM image 비교


구분	GI	PosMAC3.0
부식 생성물	Zn0	$Zn_{5}(OH)_{8}CI_{2}$, $H_{2}O$, $Zn_{4}CO_{3}(OH)_{6}$, $H_{2}O$
Image	다공질의 치밀하지 못한 구조	안정적이고 치밀한 구조

■ PosMAC3.0 시공 전 자재 보관 유의사항

- · 코일. Sheet, 가공품 모두 건조하고 통풍이 원활한 곳에 보관해야 합니다. 바닥에 방치 시 땅으로부터 수증기로 인한 백청이 발생할 수 있습니다. 코일의 경우 바닥에 비닐 등의 밀폐성 포장을 깔고 그 위에 두꺼운 5각목(10㎝ 이상 권장) 설치 후 적치하여 통풍이 원활하도록 하여야 합니다.
- · 나포장 코일, Sheet나 가공품은 포장을 씌워 비를 맞지 않도록 하고, 비가 그치면 포장을 제거하여 내부 수분이 증발, 제거 되도록 하여야 합니다. 수분이 있는 환경에 나포장 코일. Sheet, 가공품을 놓고, 그 위에 비닐을 덮어 방치하는 것은 수분과의 반응을 촉진시키므로 지양하여야 합니다.
- ㆍ 코일의 장기보관 시에는 백청 발생 가능성이 있으므로 조기 사용하며, 선입선출하여야 합니다.
- · 포장 해체한 나포장 코일은 전량 사용하거나. 부득이한 경우에도 최대한 빨리 사용하여야 합니다.

PosMAC®3.0의 Galling성, 내스크래치성

■ Tool pass량 증가에 따른 마찰계수 변화

PosMAC3.0은 GI 대비 도금층 경도가 높아 Galling성, 내스크래치성이 매우 우수합니다. 따라서 고객사에서 Press시에 GI 대비 금형의 오염을 현저히 줄일 수 있습니다.

도금층 경도

· PosMAC3.0 : Hv 110~130

· GI: Hv 60~80

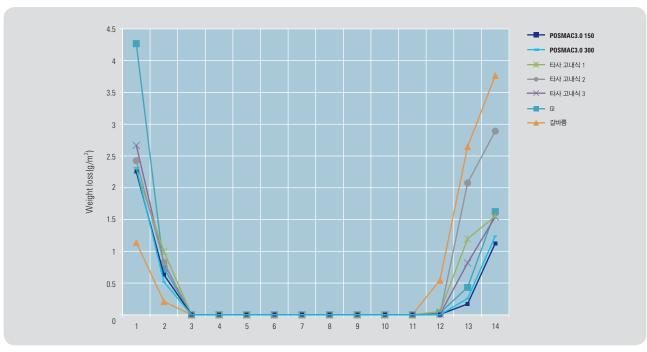
· 갈바륨: Hv 80~100

■ 마찰 테스트 후 외관

실험조건

· 목표 하중: 333.3 kgf, 압력: 3.736 MPa

· 실험 설정: 이동거리 200mm, 이동속도 20mm/sec


· 마찰평균구간: 시작거리 30mm, 종료거리 170mm

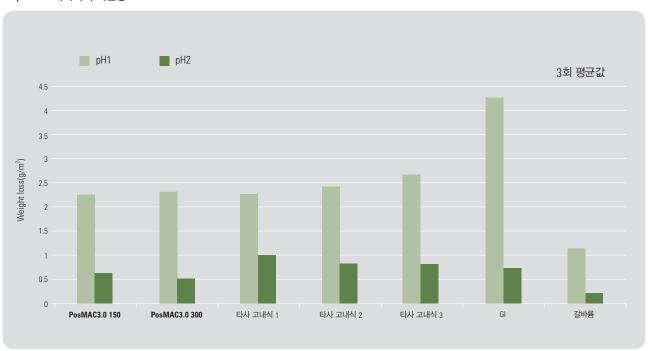
· P-DBH 세정유 도포

PosMAC®3.0의 내화학성

- · PosMAC3.0은 산성 환경에서는 GI 보다, 염기성 환경에서는 갈바륨 대비 도금층의 감량이 적습니다.
- · pH가 1~2인 강산성에서는 GI가, pH 13~14인 강염기에서는 갈바륨이 특히 내화학성이 열위합니다.
- · PosMAC3.0은 내화학성이 우수하므로 농업 축사, 건축자재등에 채용이 적합합니다.

■ pH에 따른 도금재별 도금층 무게감량 분석

테스트방법 : H_2SO_4 , NaOH 및 NH_3 로 pH $1{\sim}14$ 의 용액을 제조하여 24시간 침지 후 도금층 무게 감량을 측정

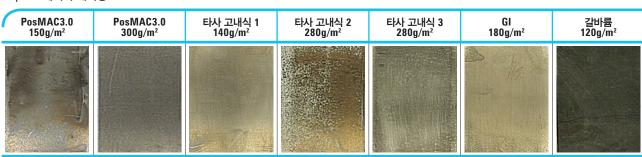

■ pH 1에서의 내식성

PosMAC3.0	PosMAC3.0	타사 고내식 1	타사 고내식 2	타사 고내식 3	GI	갈바륨
150g/m ²	300g/m²	140g/m²	280g/m²	280g/m²	180g/m²	120g/m²

■ pH 2에서의 내식성

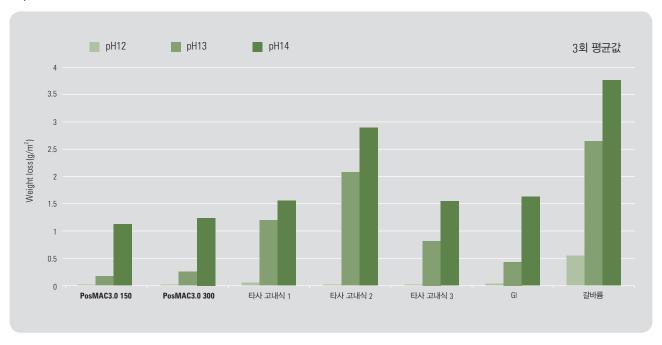
·						
PosMAC3.0 150g/m²	PosMAC3.0 300g/m²	타사 고내식 1 140g/m²	타사 고내식 2 280g/m²	타사 고내식 3 280g/m²	GI 180g/m²	갈바륨 120g/m²

■ pH 1~2에서의 무게감량



- · pH 1~2의 산성영역에서는 상용합금도금재 모두 우수한 내식성을 보임
- · pH 1~2의 산성영역에서는 AI 함량이 높은 갈바륨이 가장 우수한 내식성을 보임

■ pH 13에서의 내식성


PosMAC3.0	PosMAC3.0	타사 고내식 1	타사 고내식 2	타사 고내식 3	GI	갈바륨
150g/m²	300g/m²	140g/m²	280g/m²	280g/m²	180g/m²	120g/m²

■ pH 14에서의 내식성

PosMAC®3.0의 내화학성

■ pH 12~14에서의 무게감량

- · pH 1~2의 산성영역에서는 AI함량이 높은 갈바륨이 가장 우수한 내식성을 보였으나, pH 12~14의 알카리영역에서는 가장 열위한 내식성을 보임
- · PosMAC3.0은 pH 12~14의 알카리영역에서 우수한 내식성을 보임

10% 암모니아 용액에서의 내식성

- 평가 방법
- · 10% 암모니아 용액(pH 12.5)에 침적
- · 100Hr 마다 용액교체, 총 1200Hr 침지후 판상태 확인

■ 침지 1000, 1200시간 후 내식성

침 ²	덕	PosMAC3.0	GI	갈바륨	침적	PosMAC3.0	GI	갈바륨
시 ²	<u>'</u>	120g/m²	275g/m²	100g/m²	시간	120g/m²	275g/m²	100g/m²
1000)Hr				1200Hr			

- · 갈바륨의 경우 400Hr이후 적청발생하며, GI의 경우 1000Hr 이후 급격히 적청 발생
- · PosMAC3.0의 경우 1200Hr 경과후에도 적청 발생없이 양호

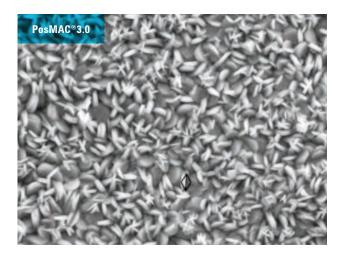
산성비 시뮬레이션

 \cdot 30cycle에서 Edge가 노출된 갈바륨에 적청 발생 / 60cycle에서 Edge가 노출된 GI도 적청 발생

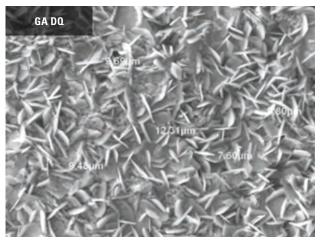
산성비		30 Cycle		60 Cycle			
시뮬레이션	PosMAC3.0	GI	갈바륨	PosMAC3.0	GI	갈바륨	
도금량 양면합	100g/m²	275g/m²	100g/m²	100g/m²	275g/m²	100g/m²	
Edge taping							
Edge 노출							

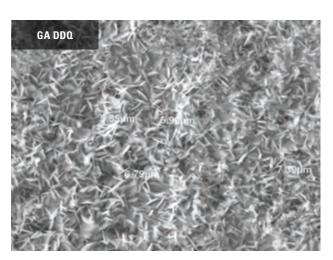
테스트 조건 : Artificial acid rain(0.1% NaCl solution+ H_2SO_4 , 35°C, 1Hr, pH4) \rightarrow Drying(30%RH at 60°C, 4Hr) \rightarrow Humid Environment(95%RH at 50°C, 3Hr)

· 90cycle까지 Edge가 노출된 PosMAC3.0에는 적청 미발생


산성비		90 Cycle		120 Cycle			
시뮬레이션	PosMAC3.0	GI	갈바륨	PosMAC3.0	GI	갈바륨	
도금량 양면합	100g/m²	275g/m²	100g/m²	100g/m²	275g/m²	100g/m²	
Edge taping							
Edge 노출							

테스트 조건 : Artificial acid rain(0.1% NaCl solution+ H_2SO_4 , 35°C, 1Hr, pH4) \rightarrow Drying(30%RH at 60°C, 4Hr) \rightarrow Humid Environment(95%RH at 50°C, 3Hr)


PosMAC®3.0의 인산염 처리성


인산염 처리성

· 인산염결정이 조밀하게 형성되어 인산염 처리성이 양호합니다.

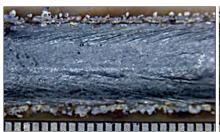
인산염 부착량	결정 Size
(g/m²)	(μm)
3.75	4.6
3.64	9~12
3.56	5~8
	(g/m²) 3.75 3.64

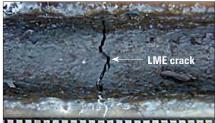
가스메탈아크(GMA) 용접

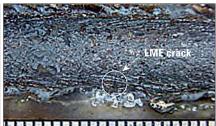
- · 용접기 일반적인 시판 용접기로 용접이 가능합니다.
- · 용접 와이어 통상의 연강, 구조재용 와이어를 적용할 수 있습니다. 탄소강계열의 KC28을 사용하면 스테인리스 용접재료인 SM309L, SM310 대비하여 용접부의 액상취화균열(LME) 방지에 유리합니다.
- · 실드가스 스패터 발생 저감을 위해 Ar+20%CO₂ 가스를 사용합니다.
- · 용접전류, 전압 일반 냉연강판과 동일한 용접속도로 용접할 경우, 도금층의 증발에 열을 빼앗기기 때문에 전류치를 일반 냉연강판에 비해 약간 높게 설정해야 합니다. (일반 냉연강판 전류치에서 5~10% 정도)
- · 용접속도 블로우 홀, 피트 등의 결함이 발생할 경우에는 용접속도를 냉연강판에 비해 낮게 설정해야 합니다.
- · 보수 Spray 도장 용접부는 도금층이 소실되었기 때문에 내식성 확보를 위해 보수 Spray 도장을 실시해야 합니다. 기존 시판중인 Zn-Al계 보수 Spray 도장을 그 해당 메이커의 시방서에 의거하여 실시하면 됩니다.

■ 용접재료에 따른 액상취화균열

(LME, Liquid Metal Embrittlement) 발생여부


대상재 : PosMAC3.0-C재, 1.2 mmt, 도금량 M140g/m²,


모금당 IVI140g/III-, 미도유 및 무처리재


5	용접재료	주요성분	인장강도	연신율	비고
КС	28(1.2Ф)	0.07C-0.86Si-1.5Mn	580MPa	28%	YGW12, ER70S-6
SM3	809L(1.2Φ)	22Cr-12Ni-0.02C	563MPa	43%	STS 용접재료
SM	310(1.2Ф)	25Cr-20Ni-0.1C	610MPa	35%	212 유입세포

■ 상부 비드 표면부 LME균열 관찰

탄소강 계열의 KC28은 LME없이 양호하나, 스테인리스 스틸 계열 용접재료는 LME에 민감합니다.

KC28: 150A-18V-1.0m/min

SM309L: 180A-18V-1.0m/min

SM310: 180A-20V-1.1m/min

※ 과도한 응력을 받는 상태에서 용접시에는 LME균열이 발생할 수 있으니, 사용전 품질 담당자와 기술 협의 바랍니다.

PosMAC3.0 용접 가이드라인

■ PosMAC3.0 Panel과 STS304 Pipe간 원주 필렛아크 용접방법

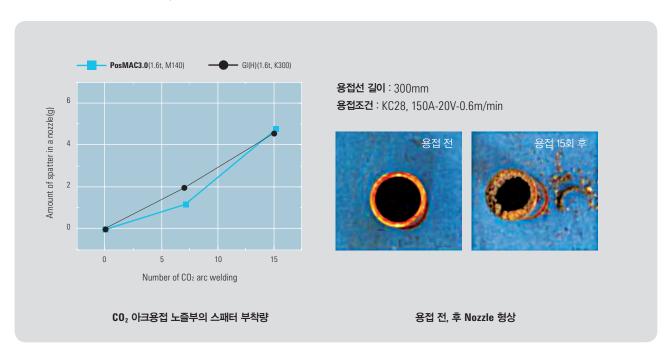
용접시 PosMAC3.0 강판 용접부 LME 균열 방지 (적용예 : 저수조 탱크)하기 위해 적정 용접재료 및 보호가스혼합비를 사용하여야 합니다.

 $-308L(100\%CO_2), 312(Ar+2\%O_2)$

■ PosMAC3.0 panel과 STS304 pipe 간 필렛 아크 용접부 단면사진

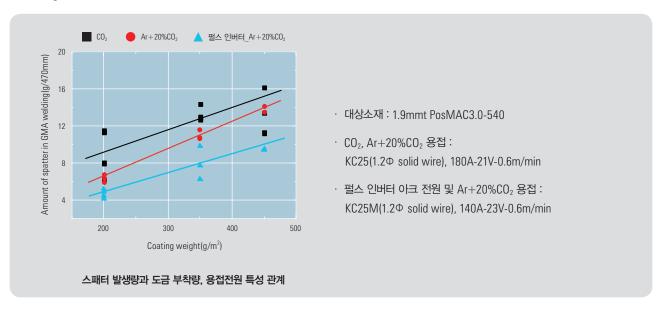
구분	제조사	직경	Eŀō!	타입 보호가스			주요 호	학성분		
1 =	MILLY	70	-16		С	Mn	Si	Cr	Ni	Mo
Shield-Bright 308L Xtra	SeAH ESAB	Ф1.2	Flux cored wire	100%CO ₂	0.03	1.3	0.6	19.2	9.6	0.2
SMP-M312	OCALI LOAD	Ψ1.2	SolidWire	$Ar+2\%0_2$	0.1	1.9	0.33	29.9	9.79	-

[※] 보호가스혼합비 변경시, PosMAC3.0 강판 용접부 LME 균열이 발생할 수 있습니다.


PosMAC®3.0의 용접성

■ 용접시 스패터(Spatter) 발생

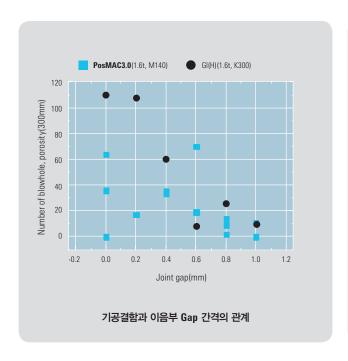
대상재: PosMAC3.0-C재, 1.6 mmt, 도금량 M140g/m², 미도유 및 무처리재

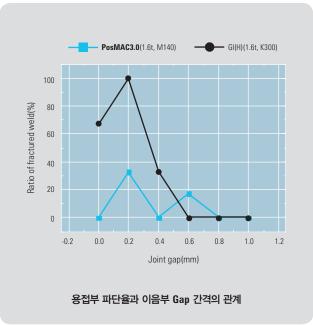

용접조건: CO₂ 용접, 용접재료 KC28 solid wire(1.2中), 전류 150A, 전압 20V, 용접속도 0.6m/min

평가결과: 아크용접 횟수가 증가함에 따라 노즐부의 스패터 부착량도 증가합니다. 따라서 약 10회(용접선 3,000mm) 용접후 노즐청소가 필요합니다.

■ 스패터(Spatter) 저감 방법

도금재의 아크용접에서는 아연이 증발하여 용융금속을 밀어내기 때문에 스패터가 많이 발생합니다. 스패터는 도금 부착량이 증가함에 따라 현저하게 나타나며, 비도금재에 적용하는 CO_2 용접에서도 민감하게 반응합니다. 이를 개선하기 위해서는 펄스 인버터 형식의 아크 전원이 필요하며 쉴드가스는 $\mathrm{Ar} + 20\mathrm{CO}_2$ 로 적용하면 스패터를 저감할 수 있습니다.

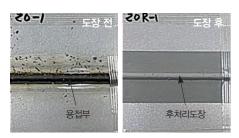

■ 기공(Porosity, Blowhole) 발생 저감 방법


대상재 : PosMAC3.0-C재, 1.6 mmt, 도금량 M140g/m², 미도유 및 무처리재

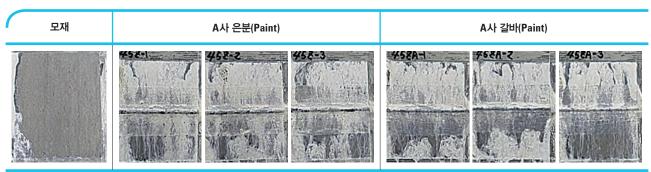
용접조건: CO2 용접, 용접재료 KC28 solid wire, 전류 150A, 전압 20V, 용접속도 0.6m/min

평가결과: 이음부 Gap 간격을 0.6mm 이상으로 설정하면, 이음부 사이로 아연 증기의 배출이 촉진되어 기공결함이 감소되며

용접부의 강도가 개선됩니다.



■ 아크용접부 후처리 방법


- ㆍ 아크용접 후에는 용착금속부와 함께 용접열향부에 도금층이 소실되는 관계로 후처리가 필요합니다.
- · PosMAC3.0의 경우 일반적으로 상용 판매되는 AI계열의 은분, 갈바닉 후처리 용액을 최소 편면 40µm 이상 도포해야 합니다.

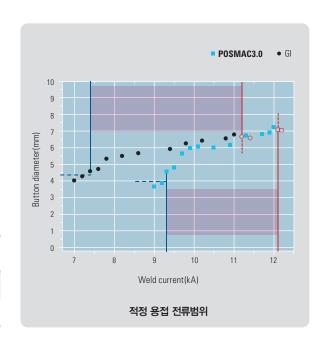
소재: 1.9mmt, 540MPa, 도금부착량 M450

아크용접: KC25M(1.2中, solid wire), Ar+20%CO2, 160A-0.7m/min

■ PosMAC3.0 아크용접부 후처리조건별 SST 결과(960Hr 경과 후)

테스트 방법: 가공 후 염수분무시험(SST, Salt Spray Test) / [ISO 9227, JIS Z2371, ASTM B117] 5%NaCl, 35℃

PosMAC®3.0의 용접성

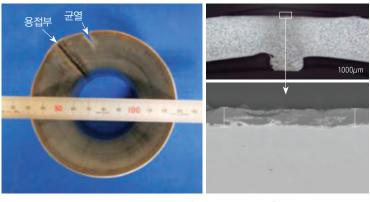

Spot 용접

- · PosMAC3.0의 Spot용접에서는 일반적인 도금재와 마찬가지로 도금층의 용융에 의해 통전경로가 확대되어 전류밀도가 저히하기 때문에 냉연강판에 비해 용접전류를 높여야 합니다.
- · 전극과 도금층 내의 아연이 반응하여 전극이 소모됨으로써 전극수명이 짧아지기 때문에 미리 전극수명을 파악하여 정기적으로 드레싱, 교환을 실시해야 합니다.

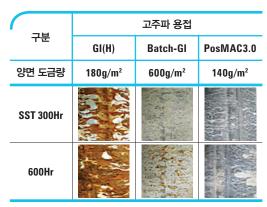
■ 용융아연도금과 PosMAC3.0과의 Spot 용접성 비교

· 적정 용접 전류범위는 안정적으로 확보 가능합니다.

도금강판	강판두께 (mm)	편면 도금부착량 (g/m²)	적정 전류범위 (기준 : 1.0kA 이상)
PosMAC3.0	0.97	122	2.7
GI	1.2	72	3.8


고주파 조관용접

- · PosMAC3.0의 고주파 조관용접은 일반적인 용융아연도금재와 유사한 작업성을 나타냅니다.
- · 용사처리 후 용접부 내식성은 일반 용융아연도금강판보다 우수합니다.


■ PosMAC3.0의 조관성, 고주파 조관용접성

강종 및 강관 사양: PosMAC3.0 M200도금재, Chromate처리재 / 외경 60.4mm, 48.9mm, 두께 2.0mm 평가 결과:

- · 조관성이 양호하고 용접부 가공성이 우수합니다. 모재 파단 발생시까지 확관율이 60% 이상입니다.
- · 용접부 보수 용사: AI & Zn이단용사, AI-Zn 합금용사, AI용사 / 부착량 7µm 이상으로 실시하는 것을 권장합니다.
 - * 밀착성 및 부착량 확보를 위해 초층용사는 AI계 용사재료의 적용이 필요합니다.

PosMAC3.0 고주파 용접강관 확관 시험 후 형상 및 보수용사층 조직

PosMAC3.0 고주파 용접강관 용접부 내식성

※ 과도한 응력을 받는 상태에서 용접시에는 LME균열이 발생할 수 있으니, 사용전 품질 담당자와 기술 협의 바랍니다.

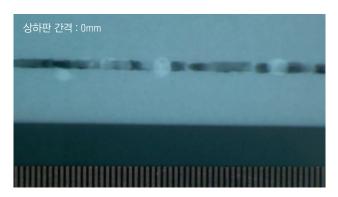
레이저 용접

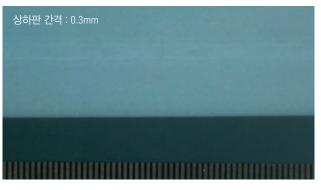
레이저용접은 아크용접에 비하여 저입열 용접이 가능하여 스패터, 흄등이 적게 발생하는 관계로 작업성이 양호합니다.

■ 맞대기 이음부 용접

PosMAC3.0의 레이저용접에서는 입열량이 과도하게 많이 적용되면(저속 용접시) 용접열에 의해 도금층이 탈락하고 산화되어 용접부의 내식성 확보가 곤란합니다. 또한 적정 입열량 대비 적으면(고속 용접시) 관통용접이 곤란하기 때문에 주의할 필요가 있습니다.

아래 표면 강재두께, 도금부착량에 따른 적정 용접속도 구간을 나타낸 것으로 평가 대상 이외의 강종에 대해서는 별도로 용접조건을 도출할 필요가 있습니다.

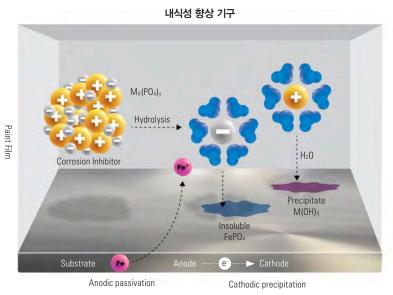

PosMAC3.0 맞대기 이음부의 적정 레이저 용접조건


※ 모재가 용접에 의해서 녹아서 용접 금속으로 된 것을 용입이라 하며, 그의 판 두께 방향에의 깊이를 용입 깊이라 한다. 이음의 일부만 용입되는 것을 부분용입이라 한다.

■ 겹치기 이음부 용접

겹치기 이음부를 레이저 용접하는 경우에는 레이저용접열에 의해 상하판 사이에 있는 도금층이 기화되고 용융금속쪽으로 혼입되어 기공이 발생하기 쉽습니다. 기공은 용접속도가 빠를수록 많이 발생되며 용접입열량이 감소하면 일정 수준 개선이 가능하지만 근본적인 방지는 곤란합니다. 현재로는 기화된 도금층이 외부로 방출되기 용이하도록 상하판 간격을 3.0mm 이상 두는 것이 효과적인 수단입니다.

다만, 상하판 간격이 증가할수록 기공방지에는 유리하나 과도하게 간격을 설정하면 건전한 이음부를 확보하기 곤란하기 때문에 주의가 필요합니다.


Lap joint 레이저 용접부의 X선 분석 결과: 2.3t PosMAC3.0-C, M140, NT / 6kW-4m/min

PosMAC®3.0 전용 보수도료

맥가드의 특징

- ·맥가드 제품은 PosMAC3.0 전용으로 개발된 보수도료입니다.
- ·맥가드 제품은 고분자간의 우레탄(Urethane) 결합으로 경도, 내화학성 및 내수성이 우수합니다.
- ·맥가드 제품은 아크릴계 폴리올을 주성분으로 하는 2액형 도료로서 특수방청안료[Mx(P04)y]와 아연 및 알루미늄 Flake를 사용하여 뛰어난 내식성을 갖고 있습니다.
- ·맥가드 제품은 HDI(Hexamethylene diisocyanate)를 경화제로 사용하여 MDI(Methylene Diphenyl Diisocyanate) 또는 TDI(Toluene diisocyanate)와 같이 Benzene ring에 직접 Isocyanate가 결합하는 것보다 내변색성이 우수한 내후성 도료입니다.
- ·내식성 확보를 위해 페인트 혹은 스프레이 방식으로 편면 40µm 이상 도포해야 합니다.

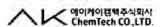
내식성 평가 결과

·상용 제품(60µm) 대비 적은 부착량(40µm)으로 우수한 용접부 내식성 확보

■ CCT 평가 결과

CCT*	상용제품(60㎞)	맥가드(40 <i>μ</i> m)
150 Cycle (1200Hr)	적청발생	

*CCT 1cycle(KS R 1127): 염수분무 2hr(5% NaCl, 35°C) → 건조 4hr(25% RH, 60°C) → 습윤 2hr(95% RH, 50°C)



연락처 에이케이켐텍 주식회사

포항공장: 경상북도 포항시 남구 호동로 25 에이케이켐텍(주)

Tel: 054-280-2127 / Fax: 054-278-6579

http://www.akchemtech.co.kr

맥볼트의 특징

· PosMAC3.0의 자연전위와 유사한 제품개발로 전위차에 의한 부식(Galvanic Corrosion*)을 억제하고, Zn & Al Flake의 희생방식을 통해 우수한 내식성을 확보한 PosMAC3.0 전용볼트 입니다. * Galvanic Corrosion: 2개의 서로 다른 금속들간 접촉시 발생하는 전기화학적 작용에 의해 발생하는 부식

Coating

■ 5% NaCl 수용액중의 자연전위 및 부식 억제

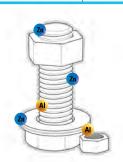
-0.61V (HR/CR)	-1.08V 도금층	-0.53V	-0.61V (HR/CR)	-1.08V 도금층	-1.05V -0.61V	
PosMAC	3.0 강판	STS bolt	PosMAC	3.0 강판	Coating on steel bolt	

■ 소재별 자연전위 측정 결과

·5% NaCl(pH6.5, 35°C), PosMAC3.0: -1041.6 mV/SCE

소재 종류	전위(mV)
Steel	-634.8
아연도금	-1049.0
아연도금 STS 304	-530.8
맥볼트	-1054.7

표면처리 물질 및 방법


■ 코팅제 성분

·바인더: Epoxy type

·주요성분: Zn & Al Flake 혼합 + Nano Powder

·특징: 희생양극인 Zn과 Al Flake의 최적 조합과 Flake간의 공극에 Nano Powder로 충진 되도록 코팅층을 구성하여 우수한 내식성을 갖도록 합니다.

·코팅방법: Dip & Spin → Heat Treatment(Dry)

■ 코팅 공정

전처리 건조	2차 코팅 건조	품질 검사
(블라스트) 1차 코팅 (230~250℃)	(230~250)	*c)

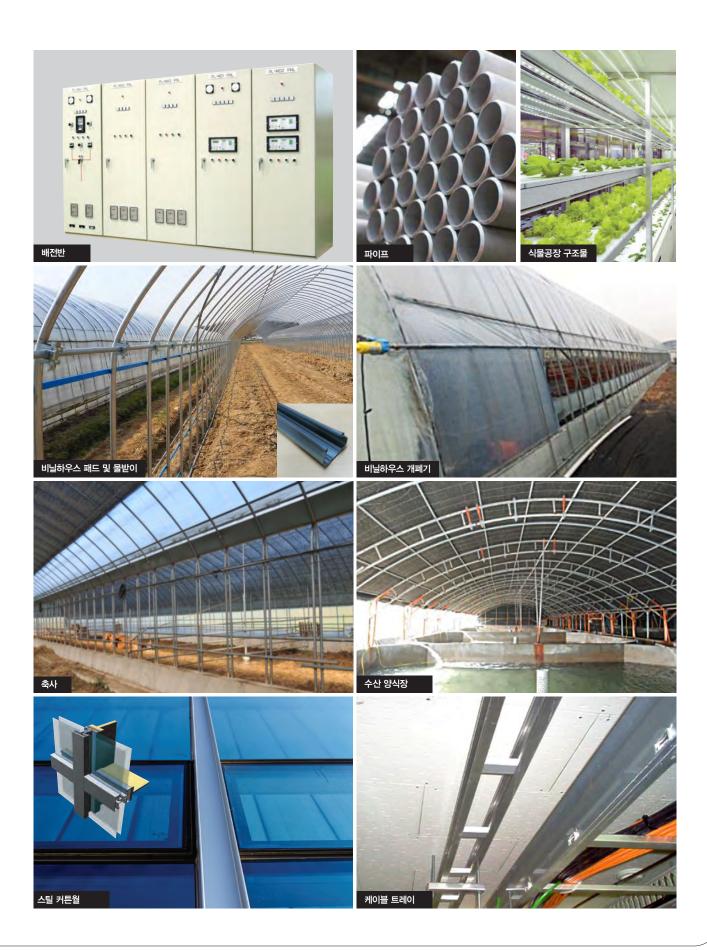
■ Bolt 자체 CCT 평가

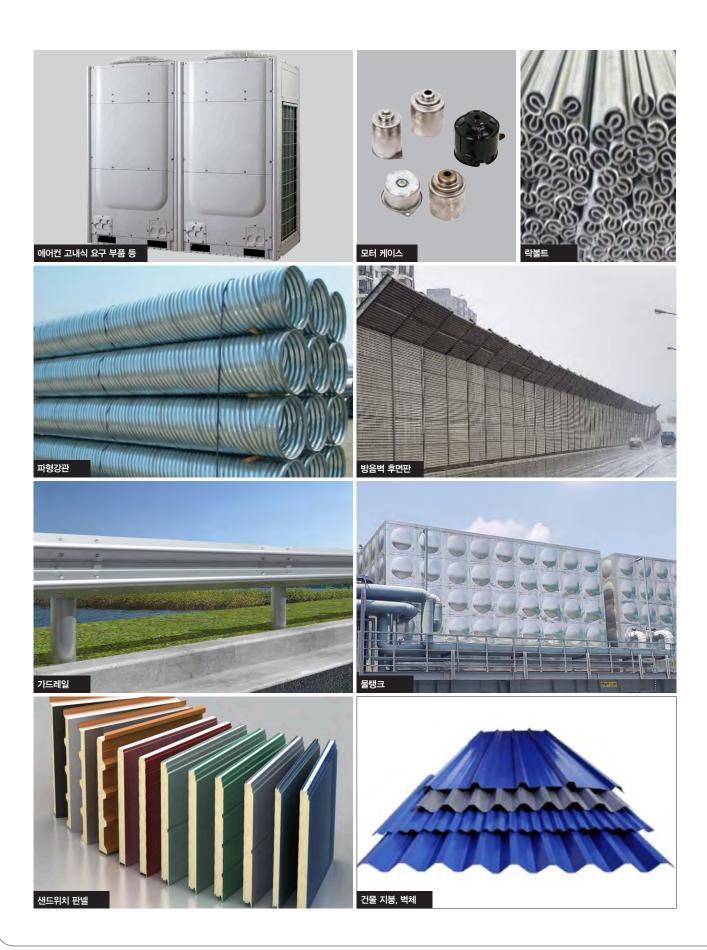
10~25 Cycle	30~50 Cycle	180~250 Cycle
일반재 : Zn(Cr)*	STS 304	개발재 : MAC Bolt
SAMINE S		180 250

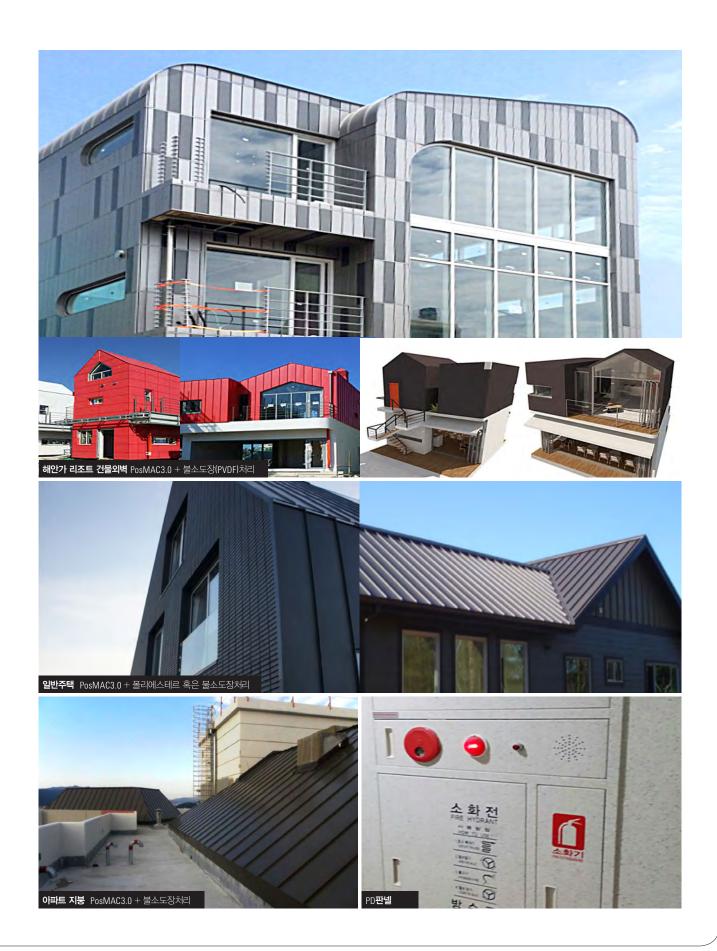
■ PosMAC3.0-PosMAC3.0 강판 Bolting 후 CCT 평가

30 Cycle	100~300 Cycle
Zn(Cr) - ZineDust - (門實刊) STS MAC 1 POSMAG	90:

- *기존도금: Zn(Cr): Zn전기도금에 Chromate처리
- ·개발제품(맥볼트): CCT 200 Cycle (1,600Hr) 이상 적청 미발생
- ·기존 Zn(Cr)도금재: 30 cycle (240Hr) 적청 발생, STS 304: 50cycle (400Hr) 적청 발생
- ·테스트 방법: 복합부식시험 (CCT, Cyclic Corrosion Test)


[ISO 14993] 1Cycle: 염수분무 2Hr(5%NaCl, 35%) → 건조 4Hr(25%RH, 60℃) → 습윤 2Hr(95%RH, 50℃)




연락처 삼일 주식회사

본사: 경기도 안산시 단원구 지원로 89 시화공단 5라 409호(성곡동 673-9) Tel: 031-319-8137 / Fax: 031-319-8139 / E-mail: samil98@sifastener.com http://www.sifastener.com

후처리

유기계 Cr-free(NB)

우수한 내식성 유기계 Cr-free 피막에 의해 뛰어난 내백청성을 나타냅니다. 환경 적합성 크롬을 전혀 함유하지 않은 피막이기 때문에 환경 친화적인 재료입니다.

∓ -171	ਲੁਦ ।	내식성	가공후	내식성	
후처리	SST 72Hr	SST 96Hr	SST 24Hr	SST 48Hr	
NB			6		PosMAC3.0 도금층 유기계 Cr-free(NB)

무기계 Cr-free(NT)

전도성 무기계 피막이기 때문에 전기저항이 낮고, 표면의 전도성이 우수합니다.

내식성 크로메이트 처리와 동등한 내백청성을 나타냅니다.

환경 적합성 크롬을 전혀 함유하지 않은 후처리이기 때문에 환경 친화적인 재료입니다.

후처리	평판 니	· 내식성	가공후	내식성	
우서디	SST 72Hr	SST 96Hr	SST 24Hr	SST 48Hr	D 144000 = 7=
NT					PosMAC3.0 도금층 무기계 Cr -free(NT)

크롬3가 처리(CE)

우수한 내식성 질산크롬 및 인산 크롬의 (r³+ 피막에 의한 환경 차단 방식으로 부식인자로부터 직접 접촉을 방지함으로써 우수한 내백청성을 보입니다.

환경 적합성 환경 유해물질인 Cr8+를 함유하지 않고, Cr3+로 내식성능을 확보한 환경 친화적인 재료입니다.

중하다	평판	내식성	가공후		
후처리	SST 120Hr	SST 168Hr	SST 24Hr	SST 48Hr	PosMAC3.0 도금층 ———
CE					크롬3가 Steel

HR Base PosMAC®3.0 제조가능 Spec

- · 도금량: 80~400g/m² (양면)
- · 후처리: Cr-Free (NB, NT), Chromate(CL), ECO Chromate(CE)
- \cdot 제조가능 사이즈(CQ기준) : 두께 1.1 \sim 6.0mm / 폭 800 \sim 1,650mm ※ 주문 전 필히 제품설계부서에 품질 Spec 검토를 받으시기 바랍니다.

0.1	POSCO	V0 D 0000	JIS	Me	Mechanical properties(MPa,%)					
Grade	(구 규격)	KS D 3030	(유사 규격)	ΥP	TS	EL	CMB			
ca	PM3HT270CQ (POSMAC-C)	KS-SGMHC	JIS-SGHC	170~400	270~450	30~	1T			
DQ	PM3HT270DQ (POSMAC-D)	-	-	~280	270~450	36~	1T			
	PM3HT340R (POSMAC-340)	KS-SGMH245Y	JIS-SGH340	245~450	340~500	20~	1T			
	PM3HT400R (POSMAC-400)	KS-SGMH295Y	JIS-SGH400	295~	400~	18~	2T			
Chunchungl	PM3HT440C (POSMAC-440)	KS-SGMH335Y	JIS-SGH440	335~	440~	18~	2T			
Structural	PM3HY340C (POSMAC-Y340)	-	-	340~	410~	21~	2T			
	PM3HT490C (POSMAC-490)	KS-SGMH365Y	JIS-SGH490	365~	490~	490~ 16~				
	PM3HT540C (POSMAC-540)	KS-SGMH400Y	JIS-SGH540	400~	540~	16~	3T			

 $^{^*\}textbf{CMB}: \textbf{Coating Metal Bending test}$

0 1	DIN EN 400 40	POSCO	Mechanical properties(MPa,%)				
Grade	DIN EN 10346	(유사 규격)	YP	TS	EL		
ca	EN-DX51D	PM3HT270CQ	-	270~500	22~		
DQ	EN-DX52D	PM3HT270DQ	140~300	270~420	26~		
	EN-S220GD	-	220~	300~	20~		
	EN-S250GD	PM3HT340R	250~	330~	19~		
	EN-S280GD	PM3HT400R	280~	360~	18~		
	EN-S320GD	PM3HT440C	320~	390~	17~		
Structural	EN-S350GD	PM3HY340C	350~	420~	16~		
	EN-S390GD	-	390~	460~	16~		
	EN-S420GD	-	420~	480~	15~		
	EN-S450GD	PM3HT540C	450~	510~	14~		
	EN-S550GD	-	550~	560~	-		

Ounds	ASTM 1046M	POSCO	Mechanical properties(MPa,%)				
Grade	()*은 ksi 단위	(유사 규격)	YP	TS	EL		
	A1046-CSA	PM3HT270CQ	170~380	-	20~		
CO	A1046-CSB	PM3HT270CQ	205~380	-	20~		
DQ	A1046-FSA	PM3HT270DQ	170~310	-	26~		
	A1046-SS230(SS33)	-	230~	310~	20~		
	A1046-SS255(SS37)*	PM3HT340R	255~	360~	18~		
	A1046-SS275(SS40)	PM3HT400R	275~	380~	16~		
Structural	A1046-SS340(SS50)	-	340~	450~	12~		
	A1046-HSLAS340(HSLAS50)*	PM3HT440C	340~	410~	20~		
	A1046-HSLAS380(HSLAS55)*	PM3HT490C	380~	480~	16~		
	A1046-HSLAS410(HSLAS60)*	PM3HT540C	410~	480~	12~		

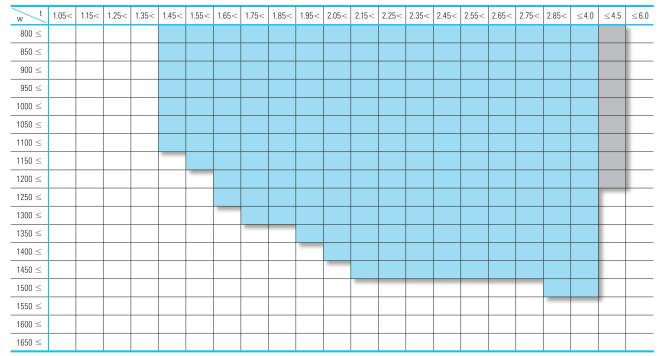
^{*} 이 규격에 대해서는 주문 전 제품품질설계부서에 사전검토 받으시기 바랍니다.

제조가능 Spec(HR Base)

* 하기 제조가능 Spec은 Mill Edge 기준입니다. Slit Edge 주문시에는 하기 기준대비 가능 폭이 20mm 줄어듭니다.

PM3HT270CQ, PM3HT270DQ, PM3HT340R 주문투입 가능 주문투입전 품질담당 협의필요 1.05< 1.15< 1.25< 1.35< 1.45< 1.55< 1.65< | 1.75< | 1.85< | 1.95< | 2.05< | 2.15< | 2.25< 2.35< 2.45< 2.55< 2.65< 2.75< 2.85< ≤4.0 ≤4.5 ≤6.0 $850 \leq$ $900 \leq$ 950 ≤ 1000 ≤ 1050 ≤ 1100 ≤ 1200 ≤ 1250 ≤ 1300 ≤ 1350 ≤ 1400 ≤ 1550 ≤ 1600 ≤ 1650 ≤

РМЗН	PM3HT400R												의필요									
w t	1.05<	1.15<	1.25<	1.35<	1.45<	1.55<	1.65<	1.75<	1.85<	1.95<	2.05<	2.15<	2.25<	2.35<	2.45<	2.55<	2.65<	2.75<	2.85<	≤4.0	≤4.5	≤6.0
800 ≤																						
850 ≤																						
900 ≤																						
950 ≤																						
1000 ≤																						
1050 ≤																						
1100 ≤																						
1150 ≤																						
1200 ≤																						
1250 ≤																						
1300 ≤																						
1350 ≤																						
1400 ≤																						
1450 ≤																						_
1500 ≤																						
1550 ≤																						
1600 ≤																						
1650 ≤																						


PM3HT440C, PM3HY340C

	T 405 1445 1405 1405 1445 1455 1405 1475 1405 1405 1405 1005 1005 1005														문누입	가능		TT	누입신	굼실금	18 합	의필요
w	1.05<	1.15<	1.25<	1.35<	1.45<	1.55<	1.65<	1.75<	1.85<	1.95<	2.05<	2.15<	2.25<	2.35<	2.45<	2.55<	2.65<	2.75<	2.85<	≤4.0	≤4.5	≤6.0
800 ≤																						
850 ≤																						
900 ≤																						
950 ≤																						
1000 ≤																						
1050 ≤																						
1100 ≤																						
1150 ≤																						
1200 ≤																						
1250 ≤																						
1300 ≤																						
1350 ≤							_															
1400 ≤																						
1450 ≤																						
1500 ≤																						
1550 ≤																						
1600 ≤																						
1650 ≤																						

PM3HT490C

▼ 주문투입 가능 ▼ 주문투입전 품질담당 협의필요

РМЗН	3HT540C t 1.05< 1.15< 1.25< 1.35< 1.45< 1.55< 1.65< 1.75< 1.85< 1.95< 2.05< 2.15< 2.25<														문투입	가능		주문.	투입전	품질닫	당 협약	의필요
w	1.05<	1.15<	1.25<	1.35<	1.45<	1.55<	1.65<	1.75<	1.85<	1.95<	2.05<	2.15<	2.25<	2.35<	2.45<	2.55<	2.65<	2.75<	2.85<	≤4.0	≤4.5	≤6.0
800 ≤																						
850 ≤																						
900 ≤																						
950 ≤																						
1000 ≤																						
1050 ≤																						
1100 ≤																						
1150 ≤																						
1200 ≤																						
1250 ≤																						
1300 ≤																						
1350 ≤																						
1400 ≤																						
1450 ≤																						
1500 ≤																						
1550 ≤																						
1600 ≤																						
1650 ≤																						

CR Base PosMAC® 3.0 제조가능 Spec

· **도금량**: 80~350g/m²(양면) · **후처리**: ECO Chromate(CE)

 \cdot 제조가능 사이즈(CQ기준) : 두께 $0.45\sim 2.3$ mm / 폭 $720\sim 1,860$ mm ※ 주문 전 필히 제품서비스부서에 품질 Spec 검토를 받으시기 바랍니다.

Consta	POCCO	VC D 2020	JIS	Me	chanical pro	perties(MPa	1,%)
Grade	POSCO	KS D 3030	(유사 규격)	ΥP	TS	EL	СМВ
ca	PM3CT270CQ (C-POSMAC-C)	KS-SGMCC	JIS-SGCC	170~400	270~450	30~	1T
DQ	PM3CT270DQ (C-POSMAC-D)	KS-SGMCD2	-	~280	270~450	36~	1T
DDQ	PM3CT270DD (C-POSMAC-N)	KS-SGMCD3	-	~280	270~450	43~	1T
	PM3CT340R (C-POSMAC340)	KS-SGMC245Y	JIS-SGC340	245~450	340~500	20~	1T
	PM3CT400R (C-POSMAC400)	KS-SGMC295Y	JIS-SGC400	295~	400~	18~	2T
Structural	PM3HT440C (C-POSMAC440)	KS-SGMC335Y	JIS-SGC440	335~	440~	18~	2T
	PM3HY340C (POSMACY340)	-	-	340~	410~	21~	2T
	PM3CT490C (C-POSMAC490)	KS-SGMC365Y	JIS-SGC490	365~	490~	16~	3T
	PM3CT570C (C-POSMAC570)	KS-SGMC560Y	JIS-SGC570	500~	570~	8~	3T

 ${}^{*}\textbf{CMB}$: Coating Metal Bending test

	DIN EN 400 40	2000 (011 774)	Mechanic	cal propertie	s(MPa,%)
Grade	DIN EN 10346	POSCO (유사 규격)	YP	TS	EL
ca	EN-DX51D	PM3CT270CQ	-	270~500	22~
DQ	EN-DX52D	PM3CT270DQ	140~300	270~420	26~
DDQ	EN-DX53D	PM3CT270DD	140~260	270~380	30~
	EN-S220GD	-	220~	300~	20~
	EN-S250GD	PM3CT340R	250~	330~	19~
	EN-S280GD	PM3CT400R	280~	360~	18~
	EN-S320GD	PM3CT440C	320~	390~	17~
	EN-HX340LAD	-	340~420	410~510	21~
Structural	EN-S350GD	PM3CY340C	350~	420~	16~
	EN-S390GD	-	390~	460~	16~
	EN-S420GD*	-	420~	480~	15~
	EN-S450GD*	-	450~	510~	14~
	EN-S550GD*	PM3CT570C	550~	560~	-
Grade	ASTM 1046M *()은 ksi 단위	POSCO (유사 규격)	ΥP	TS	EL
00	A1046-CSA	PM3CT270CQ	170~380	-	20~
co	A1046-CSB	PM3CT270CQ	205~380	-	20~
DQ	A1046-FSA	PM3CT270DQ	170~310	-	26~
DDQ	A1046-DDS	PM3CT270DD	140~240	-	32~
	A1046-SS230(SS33)	-	230~	310~	20~
	A1046-SS255(SS37)	PM3CT340R	255~	360~	18~
	A1046-SS275(SS40)	PM3CT400R	275~	380~	16~
	A1046-SS340(SS50)	-	340~	450~	12~
Structural	A1046-HSLAS340(HSLAS50)*	PM3CT440C	340~	410~	20~
	A1046-HSLAS380(HSLAS55)*	PM3CT490C	380~	480~	16~
	A1046-HSLAS410(HSLAS60)*	PM3CT540C	410~	480~	12~
	A1046-HSLAS480(HSLAS70)*	PM3CT570C	480~	550~	12~

^{*} 이 규격에 대해서는 주문 전 제품품질설계부서에 사전검토 받으시기 바랍니다.

1600 ≤ 1650 ≤

제조가능 Spec(CR Base)

* 하기 제조가능 Spec은 Mill Edge 기준입니다.

PM3CT270CQ 0.45 | 0.45 | 0.5 | 0.6≤ 0.7≤ 0.8≤ 0.9≤ 1.0≤ 1.1≤ 1.2≤ 1.3≤ 1.4≤ 1.5≤ 1.6≤ 1.7≤ 1.8≤ 1.9≤ 2.0≤ 2.1≤ 2.2≤ ≤2.3 850 ≤ $900 \leq$ 950 ≤ 1000 ≤ 1050 ≤ 1100 ≤ 1200 ≤ 1250 ≤ 1300 ≤ 1350 ≤ 1400 ≤ 1450 ≤ 1550 ≤

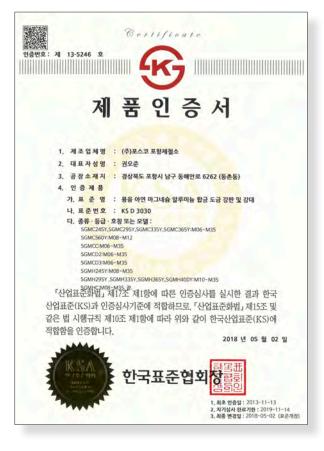
РМЗС	M3CT270DQ, PM3CT270DD														투입 가	능	주둔	무입전	선 품질(담당 협	의필요
w	0.4≤	0.45≤	0.5≤	0.6≤	0.7≤	0.8≤	0.9≤	1.0≤	1.1≤	1.2≤	1.3≤	1.4≤	1.5≤	1.6≤	1.7≤	1.8≤	1.9≤	2.0≤	2.1≤	2.2≤	≤2.3
800 ≤																					
850 ≤																					
900 ≤																					
950 ≤																					
1000 ≤																					
1050 ≤																					
1100 ≤																					
1150 ≤																					
1200 ≤																					
1250 ≤																					
1300 ≤																					
1350 ≤																					
1400 ≤																					
1450 ≤																					
1500 ≤																					
1550 ≤																					
1600 ≤																					
1650 ≤																					

PM3CT340R, PM3CT400R

PM3C	t out out of one of the out of th														투입 가	능	주등	문투입전	전 품질	담당 협	의필요
w	0.4≤	0.45≤	0.5≤	0.6≤	0.7≤	0.8≤	0.9≤	1.0≤	1.1≤	1.2≤	1.3≤	1.4≤	1.5≤	1.6≤	1.7≤	1.8≤	1.9≤	2.0≤	2.1≤	2.2≤	≤2.3
800 ≤																					1
850 ≤																					
900 ≤																					
950 ≤																					
1000 ≤																					
1050 ≤																					
1100 ≤																					
1150 ≤																					
1200 ≤																					
1250 ≤																					
1300 ≤																					
1350 ≤																					
1400 ≤																					
1450 ≤																					
1500 ≤																					
1550 ≤																					
1600 ≤																					
1650 ≤																					

PM3CT440C

제조가능 Spec(CR Base)


* 하기 제조가능 Spec은 Mill Edge 기준입니다.

PM3CT490C

PIVI3C	PM3C1490C													주문	투입 가	능	주둔	무입전	선 품질	담당 협	의필요
w	0.4≤	0.45≤	0.5≤	0.6≤	0.7≤	0.8≤	0.9≤	1.0≤	1.1≤	1.2≤	1.3≤	1.4≤	1.5≤	1.6≤	1.7≤	1.8≤	1.9≤	2.0≤	2.1≤	2.2≤	≤2.3
800 ≤																					
850 ≤																					
900 ≤																					
950 ≤																					
1000 ≤																					
1050 ≤																					
1100 ≤																					
1150 ≤																					
1200 ≤																					
1250 ≤																					
1300 ≤																					
1350 ≤																					
1400 ≤																					
1450 ≤																					
1500 ≤																					
1550 ≤																					
1600 ≤																					
1650 ≤																					

PM3CT570C

PIVI3C															투입 가	능	주등	근투입전	선 품질	담당 협	의필요
w	0.4≤	0.45≤	0.5≤	0.6≤	0.7≤	0.8≤	0.9≤	1.0≤	1.1≤	1.2≤	1.3≤	1.4≤	1.5≤	1.6≤	1.7≤	1.8≤	1.9≤	2.0≤	2.1≤	2.2≤	≤2.3
800 ≤																					
850 ≤																					
900 ≤																					
950 ≤																					
1000 ≤																					
1050 ≤																					
1100 ≤																					
1150 ≤																					
1200 ≤																					
1250 ≤																					
1300 ≤																					
1350 ≤																					
1400 ≤																					
1450 ≤																					
1500 ≤																					
1550 ≤																					
1600 ≤																					
1650 ≤																					

한국산업표준(KS: Korean Industrial Standards)은 산업표준화법에 의거하여 산업표준심의회의 심의를 거쳐 기술표준원장이 고시함으로써 확정되는 국가표준으로서 약칭하여 KS로 표시한다.

포스코는 '18년 5월에 PosMAC3.0제품에 대해서
KS D3030(용융 아연-알루미늄-마그네슘합금 도금 강판 및 강대)
규격 인증을 취득하였습니다.

인증 받은 대상은 냉연원판을 사용한 8개 규격 및 열연원판을 사용한 6개 규격입니다.

냉연원판: SGMCC, SGMCD2, SGMCD3, SGMC245Y, SGMC295Y,

SGMC335Y, SGMC365Y, SGMC560Y

열연원판: SGMHC, SGMH245Y, SGMH295Y, SGMH335Y,

SGMH365Y, SGMH400Y

항복점, 인장강도, 연신율

■ 열연 원판을 이용한 경우

종류의 기호	항복점 또는 항복강도 N/mm²	인장강도 N/mm²	연신율 %	시험편
SGMHC	(205 이상)	(270 이상)	-	5호, 압연방향
SGMH245Y	245 이상	340 이상	20 이상	
SGMH295Y	295 이상	400 이상	18 이상	- 010411-11
SGMH335Y	335 이상	440 이상	18 이상	5호, 압연방향 또는 압연방향에 직각
SGMH365Y	365 이상	490 이상	16 이상	
SGMH400Y	400 이상	540 이상	16 이상	

비교) 1N/mm² =1MPa

^{참고)} () 안의 숫자는 참고를 위해 나타냅니다.

KS 규격

항복점, 인장강도, 연신율

■ 냉연 원판을 이용한 경우

	항복점 또는 인장강도		연신율 % 표시 두께 mm					
종류의 기호	항복강도 N/mm²	폭강도 N/mm²	0.25 이상 0.40 미만	0.40 이상 0.60 미만	0.60 이상 1.0 미만	1.0 이상 1.6 미만	1.6 이상 2.3 이하	시험편
SGMCC	(250 이상)	(270 이상)	-	-	-	-	-	
SGMCD1	-	270 이상	-	34 이상	36 이상	37 이상	38 이상	5호,
SGMCD2	-	270 이상	-	36 이상	38 이상	39 이상	40 이상	압연 방향
SGMCD3	-	270 이상	-	38 이상	40 이상	41 이상	42 이상	
SGMC245Y	245 이상	340 이상	20 이상	20 이상	20 이상	20 이상	20 이상	
SGMC295Y	295 이상	400 이상	18 이상	18 이상	18 이상	18 이상	18 이상	5호, 압연 방향
SGMC335Y	335 이상	440 이상	18 이상	18 이상	18 이상	18 이상	18 이상	또는 압연 방향에 직각
SGMC365Y	365 이상	490 이상	16 이상	16 이상	16 이상	16 이상	16 이상	
SGMC560Y	560 이상	570 이상	-	-	-	-	-	

^{비교 1} SGMCD3의 판 및 코일에서 비시효성의 지정이 있는 경우는 제조공정 출하 후 6개월간 비시효성을 보증합니다. 비시효성이란 가공시에 Stretcher strain이 발생하지 않는 성질을 말합니다.

도금 부착량

도금의 부착량 표시 기호	3점 평균 최소 부착량 (g/m²)	1점 최소 부착량 (g/m²)
(M06) ^a	60	51
M08	80	68
M10	100	85
M12	120	102
M14	140	119
M18	180	153
M20	200	170
M22	220	187
M25	250	213
M27	275	234
(M35)a	350	298
(M45)a	450	383

비교 1 도금의 3점 평균 최소 부착량(양면의 합계)은 시험재에서 채취한 3개의 시험편 측정값의 평균값에 대하여 적용합니다.

비교의 표시두께 0.25mm 미만에 대해서는 보통 인장시험을 하지 않아도 좋습니다.

^{비교 3)} () 안의 숫자는 참고를 위해 나타냅니다.

비교 4) 1N/mm² =1MPa

^{비교 2)} 도금의 1점 최소 부착량(양면의 합계)은 시험재에서 채취한 3개의 시험편 측정값의 최소값에 대하여 적용합니다.

배교 3) 도금의 최대 부착량(양면의 합계)은 주문자와 제조자 사이에서 협의하여도 좋습니다.

비교 4 판 및 코일의 양면 같은 두께 도금의 한면 1점의 최소 부착량은 양면 1점 최소 부착량(양면의 합계)의 40% 이상이 바람직합니다.

^a() 안은 주문자와 제조자 사이의 협의에 따라 적용하여도 좋습니다.

두께 허용차

■ 열연 원판을 사용한 일반용의 경우

(단위 : mm)

표시 두께	나비					
표시 구///	1200 미만	1200 이상 1500 미만	1500 이상 1800 미만			
1.20 이상 1.60 미만	±0.16	±0.17	±0.18			
1.60 이상 2.00 미만	±0.17	±0.18	±0.19			
2.00 이상 2.50 미만	±0.18	±0.20	±0.22			
2.50 이상 3.15 미만	±0.20	±0.22	±0.25			
3.15 이상 4.00 미만	±0.22	±0.24	±0.27			
4.00 이상 5.00 미만	±0.25	±0.27	-			

■ 열연 원판을 사용한 구조용의 경우

(단위 : mm)

표시 두께	나비				
표시 구께	1600 이하	1600 이상 1800 미만			
1.20 이상 1.60 미만	±0.19	-			
1.60 이상 2.00 미만	±0.20	±0.24			
2.00 이상 2.50 미만	±0.21	±0.26			
2.50 이상 3.15 미만	±0.23	±0.30			
3.15 이상 4.00 미만	±0.25	±0.35			
4.00 이상 5.00 미만	±0.46	-			

■ 냉연 원판을 이용한 경우

(단위 : mm)

			나비		
표시 두께	630 미만	630 이상 1000 미만	1000 이상 1250 이하	1250 이상 1600 미만	1600 이상
(0.25 미만)	±0.04	±0.04	±0.04	-	-
0.25 이상 0.40 미만	±0.04	±0.05	±0.05	±0.06	-
0.40 이상 0.60 미만	±0.06	±0.06	±0.06	±0.07	±0.08
0.60 이상 0.80 미만	±0.07	±0.07	±0.07	±0.07	±0.08
0.80 이상 1.00 미만	±0.07	±0.07	±0.08	±0.09	±0.10
1.00 이상 1.25 미만	±0.08	±0.08	±0.09	±0.10	±0.12
1.25 이상 1.60 미만	±0.09	±0.10	±0.11	±0.12	±0.14
1.60 이상 2.00 미만	±0.11	±0.12	±0.13	±0.14	±0.16
2.00 이상 2.30 미만	±0.13	±0.14	±0.15	±0.16	±0.18
(2.30 이상)	±0.15	±0.16	±0.17	±0.18	±0.21

^{비교)} () 안의 수치는 참고를 위하여 나타냅니다

KS 규격

폭 허용차

(단위 : mm)

1441	열연 원판을	내여 인파우 이유한 건으		
너비	밀에지(A)	컷에지(B)	냉연 원판을 이용한 경우	
1500 이하	0~+25	0~+10	0~+7	
1500 초과	0∼+25	U~+10	0~+10	

길이 허용차(Sheet재)

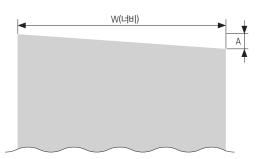
(단위 : mm)

열연 원판을 사용한 경우	냉연 원판을 이용한 경우	
0~+15	0~+15	

형상 : 직선도

■ 열연 원판을 이용한 경우

(단위 : mm)


			평판		
		701			
나비		2500 미만	2500 이상 4000 미만	4000 이상	코일
	630 미만	5	8	12	
	630 이상 1000 미만	4	6	10	임의의 길이 2000에 대해서 5
	1000 이상	3	5	8	

■ 냉연 원판을 이용한 경우

(단위 : mm)

	E			
나비	길이		코일	
	2000 미만			
630 미만	4	임의의 길이 2000에 대해서 4		
630 이상	2	임의의 길이 2000에 대해서 2		

형상: 직각도

평판의 직각도 벗어남은 $\frac{A}{W} \times 100(\%)$ 으로 나타내고 1%를 넘어서는 안 됩니다!

평탄도

■ 열연 원판을 이용한 경우

(단위 : mm)

	나비						
두께	1250 이하	1250 이상 1600 미만	1600 이상 2000 미만	2000 이상 3000 미만	3000 이상		
1.20 이상 1.60 미만	18 이하	20 이하	-	-	-		
1.60 이상 3.15 미만	16 이하	18 이하	20 이하	-	-		
3.15 이상 4.00 미만		16 이하		-	-		
4.00 이상 6.00 미만		14 이 하			25 이하		

비과 특별히 지정이 없는 한 인장강도의 규격 하한이 570N/mm² 이상인 강판 또는 항복점의 규격 하한이 430 N/mm² 이상인 강판 및 이에 해당하는 화학 성분 또는 경도를 가진 강판의 평탄도의 최대값은 위 수치의 1.5배로 합니다.

■ 냉연 원판을 이용한 경우

(단위 : mm)

	종류				
나비	만곡(bow)	외곡ª	중곡♭		
1000 미만	12 이하	8 이하	6 이하		
1000 이상 1250 이하	15 이하	9 이하	8 이하		
1250 이상 1600 이하	15 이하	11 이하	8 이하		
1600 이상	20 이하	24 이하	9 이하		

[▫] 판 및 코일의 에지(나비 방향 끝부분)에 골이 나타나는 것을 말합니다.

^b 판 및 코일의 중앙부에 골이 나타나는 것을 말합니다.

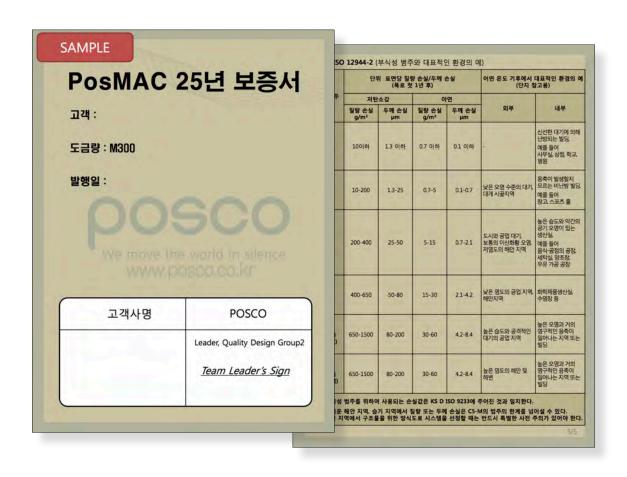
내구성 보증서

PosMAC3.0 내구성 보증서

발행 대상

포스코의 소재를 직접 구매하는 1차 고객사(가공사)에 대해서만 발급 가능 (1차 고객사가 유통일 경우 End Buyer 까지) 단, 발행기준 내 (태양광) 프로젝트 단위로는 발행 가능.

발행 종류


특정 용도/고객사 限 주문도금량 기준으로 20년 (도금량 250g/m² 이상), 25년 (도금량 300g/m² 이상) 보증서 발행.

- ·**Type1**. 일반 대기환경 부식성 범주 (ISO 12944-2 C1~C4)
- ·Type2. 태양광 프로젝트 (프로젝트명, 위치(경/위도) 표기)

보증 범위

내구성 보증(부식으로 인한 천공, 파열이 없는 구조적 이상 없음)

Bare Metal 상태로 구조물이 제작되었을 때만 보증이 가능하며 적용환경, 표면부 손상, 부식인자 접촉 등의 예외사항 있음. ※ 내식성(백청/적청)의 보증이 아님.

* 내구성 보증서 원문 중 일부

보증서 서두에 기재된 고객에만 적용되며, 해당 고객은 포스코의 사전 서면 동의 없이 제 3자에게 본 보증서를 양도할 수 없고, 사전 서면 동의를 받더리도 본 보증 내용을 초과하여 이전할 수 없음.

특허 / Environment Product Declaration

PosMAC3.0 등록 특허

PosMAC3.0 기술 관련하여 하기 5건 외 다수의 특허가 등록되어 있습니다.

No.	등록번호	발명의 명칭
1101	8702	20-1 00
01	특허 제10-0498092호	내식성이 우수한 아연도금욕 및 아연합금도금강판
02	특허 제10-1439693호	아연도금강판용 표면처리 조성물, 아연도금강판의 표면처리 방법 및 아연도금강판
03	특허 제10-1714935호	용접부 및 가공부 내식성이 우수한 아연합금도금강판 및 그 제조방법
04	특허 제10-1665912호	내식성이 우수한 용융아연합금 도금강판 및 그 제조방법
05	특허 제10-1819381호	굽힘가공성이 우수한 아연합금도금강판 및 그 제조방법

EPD(Environment Product Declaration)

PosMAC 제품은 EPD 인증을 받은 환경 친화적 제품입니다. (ISO 14025, EN15804, ISO 21930:2017)

주문시 최종 용도에 적합한 제품을 선택하기 위하여 아래사항을 점검해 주십시오.

규격

주문시 최종용도에 적합한 규격을 선택하시는 것이 중요합니다. PosMAC3.0은 고객께서 선택하실 수 있는 여러 제품 Grade가 있으므로 주문시 문의하여 주십시오.

후처리

최종 제품 사용 환경에 따라 적절한 후처리 방법을 선택하여 주십시오. (관련 내용은 카달로그 참조하십시오.) 크롬처리 또는 크롬프리 처리재는 PosMAC3.0의 표면 백청발생 방지에 효과적입니다.

도금량

목표 내구수명과 최종제품의 사용조건, 가공방법, 기타조건에 따라 적당한 도금량을 선택하십시오. 부식환경에는 후도금이, 가공성 및 용접성이 요구되는 용도에는 박도금이 좋습니다.

도유

도유량을 고객의 사용조건에 따라 선택하실 수 있습니다. 그러나 무처리, 무도유재를 동시에 주문하시면 백청이 발생할 수 있습니다. 또한, 크롬프리 후처리와 도유를 동시에 주문하시면 표면 변색이 발생할 수 있습니다.

치수

치수는 고객사의 실수율, 가공성에 큰 영향을 미칩니다. 카다로그의 제조가능범위내에서 보다 엄격한 치수를 요구하시면 주문시 반드시 문의하여 주십시오.

Edge 선택

제품의 사용조건에 따라 Mill Edge 또는 Slit Edge를 선택하실 수 있습니다. 당사 제품의 Edge가 최종 제품으로 사용된다면, Slit Edge를 주문하시는 것이 좋습니다.

용접

용접 영역은 제품에서 작은 부분이지만 경도가 높고 두께가 약간 두껍습니다. 이러한 용접부가 섞일 수 있으며, 고객이 용접부 제거가 어려울 경우 '미혼입' 옵션을 선택하십시오.

포장

운송 및 보관 조건에 따라 포장 Type을 선택할 수 있으나, 나포장을 선택하시면 백청에 대한 품질보증을 하지 않습니다.

PosMAC®3.0은 사용 방법이 적절하지 않은 경우에는 특성을 충분히 발휘하지 못하므로 다음과 같은 점에 유의하여 사용하시기 바랍니다.

보관

습기와 물이 스며들 수 있는 곳이나 기온차가 심한 곳에서의 보관을 피하여 주십시오. 통풍이 잘되는 실내에 보관하시고, 보관중에 포장지 등이 파손된 경우에는 즉시 보수하여 주십시오.또한 장기간 재고시에는 포장이 완벽하다 하더라도 미세한 백청이 진행되므로 가능하면 재고기간을 짧게 하여 주십시오. 습기가 발생하였거나 물이 스며든 경우에는 바로 건조시키고 운반중이나 작업중에 도금면이 손상되지 않도록 주의하십시오.

가공

고습도, 아황산가스 또는 매연등이 심한 환경에서의 가공은 삼가하여 주십시오. 프레스 가공시, 윤활유의 종류에 따라 도금층이 부식되는 경우가 있으므로, 사전 확인이 필요하며, 가공후에는 즉시 탈지 및 기타 방식처리를 하여 주십시오. 또한, 제품은 시간이 지나면서 STRETCHER-STRAIN 또는 FLUTTING 현상이 발생하는 경우가 있으므로, 장기 보관을 삼가하여 주시기 바랍니다.

용접

저항 용접시 도금층 증발에 의해 아연이 전극에 부착될 수 있으므로 주기적으로 청소가 필요합니다.용접시 도금층의 영향으로 일반 냉연·열연강판에 비해 스패터 및 흄의 발생량이 증가할 수 있으므로 통풍이 잘되는 곳에서 제품을 용접하십시오.

탈지

약 알칼리성 탈지제, 즉 천연 탈지제 또는 유기 용제를 사용하는 것이 좋습니다. 강알칼리의 탈지제는 아연을 부식시키기 때문에 사용하지 마십시오.

코팅

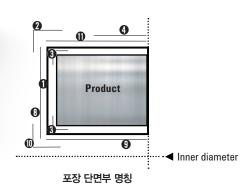
아연은 고 활성 금속이기 때문에 별도의 처리 없이 강판의 표면에 직접 코팅 시에는 원하는 접착력을 얻기 어렵습니다.

흑변

시간 경과에 따라 표면의 광택이 저하되어 흑변현상이 발생할 수 있습니다. 일반적으로 고온 다습한 환경에서 흑변현상은 촉진됩니다.

흑변 현상은 아연도금층의 일반적인 산화현상이므로 표면이 약간 검게 보이는 것 이외에는 정상 제품과 동일합니다.

사용 용도


주문시 용도와 다른 용도로 전환하여 사용하실 경우 가공시 문제가 발생될 수 있으므로 주의하여 주십시오.

기타

이 제품을 사용할 때, 코팅 등과 같은 작업 후에는 도금의 효과를 감소시킬 수 있습니다. (제품의 부식 수준은 사용되는 조건에 따라 달라질 수 있습니다.)

포장		

NO	명칭	재료
1	PP VCI WRAP	VINYL
2	OUTER RING	STEEL
3	CORNER WRAP	ANTI-RUST BOARD
4	OUTER PROTECT BOARD	STEEL
5	HORIZONTAL BAND	STEEL
6	CENTER BAND	PET
7	VERTICAL BAND	STEEL
8	SIDE BOARD	PLASTIC
9	INNER PROTECT BOARD	PLASTIC
10	INNER RING	STEEL
11	OUTER PROTECT BOARD	ANTI-RUST BOARD

^{*} 포장방식 및 소재는 포장 타입에 따라 달라질 수 있습니다.

PosMAC^{*}3.0

<u>포스맥3.0</u>

Copyright ⊚ 2018 by POSCO All rights reserved

Contact Us

서울특별시 강남구 테헤란로 440 포스코센터 품질설계 2그룹 Quality Design Group2 TEL 02-3457-0114 FAX 02-3457-1980

QR코드를 통하여 고내식 합금도금강판 포스맥3,0의 홍보 동영상을 감상하실 수 있습니다.

본사

경상북도 포항시 남구 동해안로 6261 (우) 37859

TEL 054) 220-0114

FAX 054) 220-6000

포스코센터

서울특별시 강남구 테헤란로 440 (우) 06194

TEL 02) 3457-0114

FAX 02) 3457-6000

포항제철소

경상북도 포항시 남구 동해안로 6262 (우) 37859

TEL 054) 220-0114

FAX 054) 220-6000

광양제철소

전라남도 광양시 폭포사랑길 20-26 (우) 57807

TEL 061) 790-0114

FAX 061) 790-7000

